Copied to
clipboard

G = C6×C22⋊C8order 192 = 26·3

Direct product of C6 and C22⋊C8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C6×C22⋊C8, C233C24, C24.5C12, (C22×C8)⋊5C6, (C22×C6)⋊3C8, C4.69(C6×D4), C223(C2×C24), (C22×C24)⋊5C2, (C23×C6).5C4, (C2×C24)⋊42C22, (C2×C12).535D4, C12.474(C2×D4), (C23×C12).8C2, C6.30(C22×C8), (C23×C4).10C6, C2.1(C22×C24), C2.3(C6×M4(2)), C23.33(C2×C12), (C22×C12).19C4, (C22×C4).14C12, C6.47(C2×M4(2)), (C2×C6).30M4(2), (C2×C12).981C23, C12.114(C22⋊C4), C22.9(C3×M4(2)), C22.19(C22×C12), (C22×C12).495C22, (C2×C6)⋊7(C2×C8), (C2×C8)⋊10(C2×C6), C2.3(C6×C22⋊C4), (C2×C4).59(C2×C12), (C2×C4).145(C3×D4), C4.31(C3×C22⋊C4), C6.97(C2×C22⋊C4), (C2×C12).288(C2×C4), (C2×C6).231(C22×C4), (C22×C4).142(C2×C6), (C2×C4).149(C22×C6), (C22×C6).114(C2×C4), C22.32(C3×C22⋊C4), (C2×C6).134(C22⋊C4), SmallGroup(192,839)

Series: Derived Chief Lower central Upper central

C1C2 — C6×C22⋊C8
C1C2C4C2×C4C2×C12C2×C24C3×C22⋊C8 — C6×C22⋊C8
C1C2 — C6×C22⋊C8
C1C22×C12 — C6×C22⋊C8

Generators and relations for C6×C22⋊C8
 G = < a,b,c,d | a6=b2=c2=d8=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 290 in 202 conjugacy classes, 114 normal (26 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C12, C12, C2×C6, C2×C6, C2×C6, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C24, C24, C2×C12, C2×C12, C2×C12, C22×C6, C22×C6, C22×C6, C22⋊C8, C22×C8, C23×C4, C2×C24, C2×C24, C22×C12, C22×C12, C22×C12, C23×C6, C2×C22⋊C8, C3×C22⋊C8, C22×C24, C23×C12, C6×C22⋊C8
Quotients: C1, C2, C3, C4, C22, C6, C8, C2×C4, D4, C23, C12, C2×C6, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C24, C2×C12, C3×D4, C22×C6, C22⋊C8, C2×C22⋊C4, C22×C8, C2×M4(2), C3×C22⋊C4, C2×C24, C3×M4(2), C22×C12, C6×D4, C2×C22⋊C8, C3×C22⋊C8, C6×C22⋊C4, C22×C24, C6×M4(2), C6×C22⋊C8

Smallest permutation representation of C6×C22⋊C8
On 96 points
Generators in S96
(1 11 25 67 55 83)(2 12 26 68 56 84)(3 13 27 69 49 85)(4 14 28 70 50 86)(5 15 29 71 51 87)(6 16 30 72 52 88)(7 9 31 65 53 81)(8 10 32 66 54 82)(17 33 77 45 89 60)(18 34 78 46 90 61)(19 35 79 47 91 62)(20 36 80 48 92 63)(21 37 73 41 93 64)(22 38 74 42 94 57)(23 39 75 43 95 58)(24 40 76 44 96 59)
(2 24)(4 18)(6 20)(8 22)(10 38)(12 40)(14 34)(16 36)(26 76)(28 78)(30 80)(32 74)(42 66)(44 68)(46 70)(48 72)(50 90)(52 92)(54 94)(56 96)(57 82)(59 84)(61 86)(63 88)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 37)(10 38)(11 39)(12 40)(13 33)(14 34)(15 35)(16 36)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 73)(32 74)(41 65)(42 66)(43 67)(44 68)(45 69)(46 70)(47 71)(48 72)(49 89)(50 90)(51 91)(52 92)(53 93)(54 94)(55 95)(56 96)(57 82)(58 83)(59 84)(60 85)(61 86)(62 87)(63 88)(64 81)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,11,25,67,55,83)(2,12,26,68,56,84)(3,13,27,69,49,85)(4,14,28,70,50,86)(5,15,29,71,51,87)(6,16,30,72,52,88)(7,9,31,65,53,81)(8,10,32,66,54,82)(17,33,77,45,89,60)(18,34,78,46,90,61)(19,35,79,47,91,62)(20,36,80,48,92,63)(21,37,73,41,93,64)(22,38,74,42,94,57)(23,39,75,43,95,58)(24,40,76,44,96,59), (2,24)(4,18)(6,20)(8,22)(10,38)(12,40)(14,34)(16,36)(26,76)(28,78)(30,80)(32,74)(42,66)(44,68)(46,70)(48,72)(50,90)(52,92)(54,94)(56,96)(57,82)(59,84)(61,86)(63,88), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,37)(10,38)(11,39)(12,40)(13,33)(14,34)(15,35)(16,36)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,73)(32,74)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(57,82)(58,83)(59,84)(60,85)(61,86)(62,87)(63,88)(64,81), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)>;

G:=Group( (1,11,25,67,55,83)(2,12,26,68,56,84)(3,13,27,69,49,85)(4,14,28,70,50,86)(5,15,29,71,51,87)(6,16,30,72,52,88)(7,9,31,65,53,81)(8,10,32,66,54,82)(17,33,77,45,89,60)(18,34,78,46,90,61)(19,35,79,47,91,62)(20,36,80,48,92,63)(21,37,73,41,93,64)(22,38,74,42,94,57)(23,39,75,43,95,58)(24,40,76,44,96,59), (2,24)(4,18)(6,20)(8,22)(10,38)(12,40)(14,34)(16,36)(26,76)(28,78)(30,80)(32,74)(42,66)(44,68)(46,70)(48,72)(50,90)(52,92)(54,94)(56,96)(57,82)(59,84)(61,86)(63,88), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,37)(10,38)(11,39)(12,40)(13,33)(14,34)(15,35)(16,36)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,73)(32,74)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(57,82)(58,83)(59,84)(60,85)(61,86)(62,87)(63,88)(64,81), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,11,25,67,55,83),(2,12,26,68,56,84),(3,13,27,69,49,85),(4,14,28,70,50,86),(5,15,29,71,51,87),(6,16,30,72,52,88),(7,9,31,65,53,81),(8,10,32,66,54,82),(17,33,77,45,89,60),(18,34,78,46,90,61),(19,35,79,47,91,62),(20,36,80,48,92,63),(21,37,73,41,93,64),(22,38,74,42,94,57),(23,39,75,43,95,58),(24,40,76,44,96,59)], [(2,24),(4,18),(6,20),(8,22),(10,38),(12,40),(14,34),(16,36),(26,76),(28,78),(30,80),(32,74),(42,66),(44,68),(46,70),(48,72),(50,90),(52,92),(54,94),(56,96),(57,82),(59,84),(61,86),(63,88)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,37),(10,38),(11,39),(12,40),(13,33),(14,34),(15,35),(16,36),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,73),(32,74),(41,65),(42,66),(43,67),(44,68),(45,69),(46,70),(47,71),(48,72),(49,89),(50,90),(51,91),(52,92),(53,93),(54,94),(55,95),(56,96),(57,82),(58,83),(59,84),(60,85),(61,86),(62,87),(63,88),(64,81)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)]])

120 conjugacy classes

class 1 2A···2G2H2I2J2K3A3B4A···4H4I4J4K4L6A···6N6O···6V8A···8P12A···12P12Q···12X24A···24AF
order12···22222334···444446···66···68···812···1212···1224···24
size11···12222111···122221···12···22···21···12···22···2

120 irreducible representations

dim111111111111112222
type+++++
imageC1C2C2C2C3C4C4C6C6C6C8C12C12C24D4M4(2)C3×D4C3×M4(2)
kernelC6×C22⋊C8C3×C22⋊C8C22×C24C23×C12C2×C22⋊C8C22×C12C23×C6C22⋊C8C22×C8C23×C4C22×C6C22×C4C24C23C2×C12C2×C6C2×C4C22
# reps142126284216124324488

Matrix representation of C6×C22⋊C8 in GL4(𝔽73) generated by

65000
06500
0010
0001
,
72000
07200
0010
005372
,
1000
0100
00720
00072
,
22000
07200
00101
00063
G:=sub<GL(4,GF(73))| [65,0,0,0,0,65,0,0,0,0,1,0,0,0,0,1],[72,0,0,0,0,72,0,0,0,0,1,53,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,72,0,0,0,0,72],[22,0,0,0,0,72,0,0,0,0,10,0,0,0,1,63] >;

C6×C22⋊C8 in GAP, Magma, Sage, TeX

C_6\times C_2^2\rtimes C_8
% in TeX

G:=Group("C6xC2^2:C8");
// GroupNames label

G:=SmallGroup(192,839);
// by ID

G=gap.SmallGroup(192,839);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,124]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
×
𝔽